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Abstract -
In this paper, we propose an excavator activity analysis and

safety monitoring system, leveraging recent advancements in
deep learning and computer vision. Our proposed system de-
tects the surrounding environment and the excavators while
estimating the poses and actions of the excavators. Compared
to previous systems, our method achieves higher accuracy
in object detection, pose estimation, and action recognition
tasks. In addition, we build an excavator dataset using the
Autonomous Excavator System (AES) on the waste disposal
recycle scene to demonstrate the effectiveness of our system.
We also evaluate our method on a benchmark construction
dataset. The experimental results show that the proposed
action recognition approach outperforms the state-of-the-art
approaches on top-1 accuracy by about 5.18%.
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1 Introduction
Operating excavators in a real-world environment can

be challenging due to extreme conditions, such as multiple
fatalities and injuries occur each year during excavations.
Safety is one of the main requirements on construction
sites. With the advance of deep learning and computer
vision technology, Autonomous Excavator System (AES)
has made solid progress [1]. In AES system, the excava-
tor is assigned to load the waste disposal material into a
designated area. While the system is capable of operating
a whole 24-hour day without any human intervention, in
this paper, we mainly address the issue of safety, where the
excavator could potentially collide with the environment
or other construction machines. We propose a camera-
based safety monitoring system that detects the excavator
poses, the surrounding environment, and other construc-
tion machines, and warns of any potential collisions. In
addition, based on action recognition algorithm on human
activity, we successfully extend the algorithm to excava-
tor actions and use it to develop an excavator productivity
analysis system to analyze activities of the excavator. We
note that although developed for AES, this system can also
be generally applied to manned excavators.
To build an excavator safety monitor system, we first

need to build a perception system for the surrounding

environment. The perception system includes detection,
pose estimation, and activity recognition of construction
machines. Detecting the excavator pose in real-time is a
key requirement to inform the workers and to enable au-
tonomous operation. Vision-based (marker-less, marker-
based) and sensor-based (IMU, UWB) are two of the
main methods for estimating robot pose. The marker-
based and sensor-based methods require some additional
pre-installed sensors or markers, whereas the marker-less
method only requires an on-site camera system, which
is common on modern construction sites. Therefore,
we adopt a marker-less approach and develop the system
solely from camera video input, leveraging state-of-the-art
deep learning methods.
In this paper, we propose a deep learning-based excava-

tor activity analysis and safety monitor system which can
detect the surrounding environment, estimate poses, and
recognize actions of excavators. The main contributions
of this paper are summarized as follows:
1)We collect an excavator dataset fromourAutonomous

Excavator System (AES) in Waste Disposal Recycle scene
with ground truth annotations.
2) We develop a deep learning-based perception sys-

tem for multi-class object detection, pose estimation, and
action recognition of construction machinery on construc-
tion sites. Then we showed our network get SOTA results
on the AES dataset and a benchmark construction dataset.
3) We propose a novel excavator safety monitor and

productivity analysis system based on the aforementioned
perception system.

2 Related Works
Previous studies related to safety and productivity anal-

ysis are reviewed here. We start with some of the most
basic tasks in computer vision that are essential to activity
analysis and safety monitoring system, including object
detection, image segmentation, pose estimation and ac-
tion recognition. Then, we review vision-based activity
analysis and safety monitoring system.
Object Detection. The first category is object detec-

tion. More recently, Wang et al. [2] used a region-based
CNN framework named Faster R-CNN [3] to detect work-
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Figure 1. Autonomous Excavator System (AES) activity analysis and safety monitoring system pipeline.

ers standing on scaffolds. A deep CNN then classified
whether workers are wearing safety belts. Those with-
out safety belts appropriately harnessed were identified to
prevent any fall from height.
Image Segmentation. Raoofi et al. [4] used Mask R-

CNN to detect construction machinery on Job sites. More
importantly, a segmentation network like Mask R-CNN
can be used to decide areas like digging and dumping.
Pose Estimation. The second group of technology

is skeleton pose estimation. Pose estimation has been
studied [5] based on human pose estimation network like
OpenPose. Soltani et al. [6] proposed skeleton parts
estimation of excavators.
Action Recognition. Learning-based action recogni-

tionmethods. Feichtenhofer et al. [7] proposed a SlowFast
network for video recognition. The model involves a low
pathway that operating at a low frame rate, to capture spa-
tial semantics, and a Fast pathway that operating at a high
frame rate, to capture motion at fine temporal resolution.
Bertasius et al. [8] presented a convolution-free approach
to video classification built exclusively on self-attention
over space and time.
Activity Analysis and Safety Monitoring. Here we

review recent vision based activity analysis and safety
monitoring methods in the construction area. For ex-
ample, Ding et al. [9] combined CNN with Long-Short-
Term-Memory (LSTM) to identify unsafe actions of work-
ers, such as climbing ladders with hand-carry objects,
backward-facing, or reaching far. While safety hazards

of workers were effectively identified, their method only
captured a single worker, and multi-object analysis was
not considered. On the other hand, Soltani et al. [6] used
background subtraction to estimate the posture of an ex-
cavator by individually detecting each of its three skeleton
parts including the excavator dipper, boom, and body. Al-
though knowing the operating state of construction equip-
ment would allow safety monitoring nearby, the influence
of the equipment on the surrounding objects was not stud-
ied. Chen et al. [10] propose a framework to automatically
recognize activities and analyze the productivity of multi-
ple excavators. Wang et al. [2] proposed a methodology
to monitor and analyze the interaction between workers
and equipment by detecting their locations and trajec-
tories and identifying the danger zones using computer
vision and deep learning techniques. However, the exca-
vator state is not considered in their model. Roberts et al.
[11] proposed a benchmark dataset. However, their action
recognition model accuracy is low compared to our deep
learning-based model.

Overall, in terms of activity analysis and safety moni-
toring with computer vision techniques, previous studies
focused on different parts separately, such as identifying
the working status of construction equipment or pose esti-
mation of the excavator. Our method combine the advan-
tages of SOTA deep learning models from detection, pose
estimation, and action recognition tasks.
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3 Proposed Framework
The framework for constructionmachine activity recog-

nition, safety monitor, and productivity analysis is shown
in Fig. 1. The framework contains six main modules: con-
struction machine detection, excavator pose estimation,
working area segmentation, activity recognition, safety
monitor and productivity analysis. The input to our sys-
tem is surveillance camera video. First, working areas are
being segmented into digging and dumping areas. Then,
the detection method is used to identify all construction
machines in video frames with equipment type. Sec-
ond, the excavator is identified through pose estimation
and detection-based tracking. Then, the action state of
the tracked excavators is recognized with pose estimation
and working area segmentation. Finally, construction site
safety is monitored based on detection and activity recog-
nition results. Besides, the productivity of the excavator is
calculated by the activity recognition results. The details
about each module in the framework are provided in the
following sub-sections.

3.1 Construction Machine Detection

The detection of construction equipment is realized
based on Faster R-CNN [3]. The architecture of Faster
R-CNN includes (1) backbone network to extract image
features; (2) region proposal generate (RPN) network for
generating region of interest (ROI), and (3) classification
network for producing class scores and bounding boxes for
objects. To remove duplicate bounding box, we applied
Soft-NMS [12] to limit max bounding box per object to 1.

3.2 Excavator Pose Estimation

The pose estimation is based on the output bounding box
from detection. We use [13] for pose estimation, which
backbone is ResNet. We design a labeling method for the
fixed crawler excavator as 10 keypoints. Those keypoints
of excavator parts annotated are shown in Fig. 2. These
10 keypoints including 2 bucket end keypoints, bucket
joint, arm joint, boom cylinder, boom base, and 4 body
keypoints. Unlike other pose label methods [5] to label
bucket/ excavator body as themiddle point, we label corner
point to improve accuracy.

3.3 Working Area Segmentation

We use image segmentation to decide digging and
dumping areas as shown in Fig. 3.
The segmentation network is based on ResNet [14]. A

digging area is defined as the waste recycling area which
including various toxic materials. A dumping area is a
designated area to dump waste.

Figure 2. Excavator and corresponding pose labels.
We labeled 10 parts of excavators including 2 bucket
end keypoints (bucket end1, bucket end2), bucket
joint, arm joint, boom cylinder, boom base and 4
body keypoints (body1, body2, body3, body4).

Figure 3. Area segmentation. The pink color area
is dumping area and the blue color area is digging
area.
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3.4 Excavator Action Recognition

We define three actions for excavator: 1. Digging 2.
Swinging 3. Dumping. Specifically, we define four states
of our autonomous excavator: 1. Digging state 2. Swing-
ing after digging state 3. Dumping state 4. Swinging
for digging state. More precisely, Digging indicates load-
ing the excavator bucket with target material; Swinging
after digging indicates swinging the excavator bucket to
the dumping area; Dumping means unloading the mate-
rial from the bucket to the dumping area, and Swinging for
digging means swinging the bucket to the working area.
Besides, there is an optional idle state when the excavator
is in manned mode or malfunction status.

To determine the excavator action state, we first de-
termine excavator position based on keypoints from pose
estimation and image segmentation results. Then we use
continuous frames of pose keypoints of body 1-4 to decide
whether the excavator is in the swing state. We set a thresh-
old for keypoints movement: if the mean of pose keypoints
of body 1-4 movements is smaller than a set value, then
we think the excavator body is still. Otherwise, we think
the excavator body is not still. This rule-based module is
used in our safety monitor system. Our excavator action
states are defined as follows:

1. Digging state: buckets/ arm joint in digging area and
body 1-4 is fixed points (excavator body is stilled).

2. Swinging state: buckets/ arm joint in working area
and body 1-4 is not fixed points (excavator body is not
stilled). Then we can decide whether it is Swing for dig-
ging state or Swing after digging state by the previous
state. If the previous state is a Dumping state then it will
be Swing for digging state. Otherwise, it will be Swing
after digging state.

3. Dumping state: buckets/ arm joint in dumping area
and body 1-4 is fixed points (excavator body is stilled).

4. Idle state: buckets/ arm joint in dumping area and
buckets/ arm joint/ body 1-4 is fixed points (excavator arm
and body are both stilled).

Then, we implement a more general deep learning-
based action recognition method based on SlowFast [7].
The model involves (i) a Slow pathway, operating at a low
frame rate, to capture spatial semantics, and (ii) a Fast
pathway, operating at a high frame rate, to capture motion
at fine temporal resolution. The Fast pathway can be made
very lightweight by reducing its channel capacity, yet can
learn useful temporal information for video recognition.
This deep learning action recognition model is used in the
productivity analysis module.

3.5 Safety Monitor

Detect Potential Construction Machine Collision.
The autonomous excavator and the loader may have poten-

Figure 4. The autonomous excavator and loader po-
tential collision scene when loader tries to load in
digging area. The danger signal is sent when the
autonomous excavator and the loader machines are
both detected in the digging area.

tial collision as Fig. 4 shows. So it is important to detect
potential collision since the loader is hard to know which
state excavator is currently at from his view. If more than
one machine is detected with in the same region (digging
or working area), then an alert may be indicated to the user,
and the autonomous vehicles may pause until the issue is
cleared.

3.6 Productivity Analysis

The productivity of the excavator is based on the activity
recognition results. In the solid waste recycle scene, exca-
vators usually work with other equipment, such as loaders.
For example, an excavator digs the waste and dumps it into
a dumping area. When waste is empty in the digging area,
the loader will load and dump waste in the digging area.
The excavator’s productivity can be calculated with the
cycle time, the bucket payload and the average bucket full
rate, as shown in Equation 1. Since the bucket payload is
given by the manufacturer, the target of the productivity
calculation becomes to determine the cycle time of the
excavator and the bucket full rate. To simplify the proce-
dure, the two types of swinging (swinging after digging
and swinging for digging) are not distinguished in this
paper.

%A>3D2C8E8CH(<3/ℎA) =
�H2;4B

ℎA
× �D2:4C+>;D<4(<3) × �D2:4C�D;;'0C4

(1)

The time for each cycle is measured by the workflow
showing in Fig. 5. Our action recognition module labels
each video frame of the excavator with an action label.
Next, the action labels of two consecutive frames are com-
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Figure 5. Excavator cycle time calculation method.

pared. If they are the same, it means that the action re-
mains same. Thus, the cumulative time for the current
action is increased by 1/FPS (frame per second). If the
labels are different, it means that a new action has started,
and the time of the newly recognized activity will increase
by 1/FPS. We define the total time of one cycle as the dif-
ference between the start times of two neighboring digging
actions.

4 Experiments
4.1 Dataset

We collect an excavator dataset from our Autonomous
Excavator System (AES) from the waste disposal recy-
cle scene [1]. The dataset including 1 hour of videos
containing 2 types of construction equipment (i.e. ex-
cavators, loaders). To demonstrate the effectiveness of
our dataset, we labeled 601 images with object detection
bounding boxes, excavator poses, and background seg-
mentation. 80% of the images are used for model training
while 20% are for model validation and testing. Besides,
we labeled 102 clips of excavator videos with 3 actions
(digging, dumping, swinging). The videos were captured
at 1920*1080 and filmed at 25 frames per second.
We also test our method based on the benchmark con-

struction dataset [11] which including 479 action videos of
interacting pairs of excavators and dump trucks performing
earth-moving operations, accompanied with annotations
for object detection, object tracking, and actions. The
videos were captured at 480*720 and filmed at 25 frames

per second.

4.2 Evaluation
4.2.1 Object Detection Evaluation

The detection evaluation metrics are based on the Mi-
crosoft COCO dataset [15]. The network’s performance
is evaluated using Average precision (AP). Precision mea-
sures how many of the predictions that the model made
were correct and recall measures how well the model finds
all the positives. For a specific value of Intersection over
Union (IoU), the AP measures the precision/recall curve
at recall values (r1, r2, etc.) when the maximum precision
value drops. The AP is then computed as the area under
the curve by numerical integration. The mean average
precision is the average of AP in each object class. More
precisely, AP is defined as:

�% =
1
11

∑
A ∈{0.0,0.1,...,1}

�%A , (2)

4.2.2 Pose Estimation Evaluation

The pose estimation matrix is based on The COCO
evaluation, which defines the object keypoint similarity
(OKS). It uses the mean average precision (AP) over the
number of classes for OKS thresholds as main compe-
tition metric. The OKS is calculated from the distance
between predicted points and ground truth points of the
construction machine.
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Figure 6. Excavators and loader detection result. Our
system is capable detecting multi-class construction
machines in real-time.

Table 1. Accuracy of constructionmachine detection

Network Backbone mAP (%)
Faster R-CNN Resnet-50-FPN 90.1
Faster R-CNN Resnet-152-FPN 92.3
YOLOv3 DarkNet-53 73.2

4.2.3 Action Recognition Evaluation

The performance metric is the mean Average Precision
(mAP) over each object class, using a frame-level IoU
threshold of 0.5.

4.3 Accuracy

4.3.1 Accuracy of the detection model

We implement experiments on the Faster R-CNNmodel
with a backbone network of Resnet-50-FPN and Resnet-
152-FPN. The model achieved high detection accuracy
for construction equipment. The Average Precision (AP)
values of the excavator achieved 93.0% and the loader
achieved 85.2%. With an mAP of 90.1%, the model is
demonstrated to be promising for detecting multi-class
construction equipment accurately on the construction site.

We also compared the result with Yolo V3 [16].
YOLOv3 is a one-stage state-of-art detector with ex-
tremely fast speed. In this study, the image input size
is 416x416 and this algorithm can process 20 images in
one second. Compared with some two-stage detectors, the
performance of YOLOv3 is slightly low, but the speed is
much faster and that is important for real-time applications.
The construction detection dataset from the previous step
is used for training YOLOv3, which takes 12 hours for the
training process. The mAP of YOLOv3 on our testing set
is 73.2% from an overall view, where the AP is 80.2% in
the excavator category and 60.2% in the loader category.
The detailed comparison result is shown in Table 1. The

Figure 7. Excavator pose estimation result.

Table 2. Accuracy of the pose estimation model.
Network Backbone Input size AP (%)
SimpleBaseline Resnet-50 256*192 91.79
SimpleBaseline Resnet-50 384*288 94.19
SimpleBaseline Resnet-152 384*288 96.50

result is shown in Fig. 6.

4.3.2 Accuracy of the Pose Estimation

We apply SimpleBaseline [13] to our pose estimation
model and get the following result. Experiments have
been conducted on different Backbone networks includ-
ing Resnet-50 and Resnet-152. Besides, experiments on
different image input sizes have been implemented. The
detailed comparison result is shown in Table 2. The result
is shown in Fig. 7.

4.3.3 Accuracy of the Action Recognition

We applied Slow-Fast [7] to our action recognition
model and get the following result. Experiments have been
conducted on the different networks including SlowFast-
101 and SlowFast-152. Besides, experiments on different

Figure 8. Excavators long video action detection re-
sult.
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Figure 9. Long video demos of action recognition result on different scenes of the construction dataset. Prediction
with the highest possibility is showing in the first line.

Table 3. Accuracy of the action recognition model
on our AES dataset and UIUC dataset from [11].

Dataset Network Backbone Top1 Acc. (%)

AES SlowFast-50 ResNet3d 89.70
SlowFast-152 ResNet3d 91.44

UIUC
Roberts[11] N/A 86.8
SlowFast-50 ResNet3d 91.9
SlowFast-152 ResNet3d 93.3

clip lengths have been implemented. The detailed com-
parison result is shown in Table 3. The result of top 3
action prediction is showing in the Fig. 8. We input a
excavator video and the system can predict action result in
almost real-time. Prediction with the highest possibility
is showing in the first line. Here the system predict the
action as digging with 54% confidence.
Comparing our result with Roberts [11] on their UIUC

dataset, out proposed action recognition approach outper-
forms their accuracy by about 5.18%. The action recog-
nition video demo result of the construction dataset is
showing in Fig. 9. The result shows the advantage of us-
ing deep learning model on action recognition task over
their Hidden Markov Model (HMM) + Gaussian Mixture
Model (GMM) + Support VectorMachine (SVM)method.

4.4 Productivity Analysis

The proposed framework was tested to estimate the pro-
ductivity of excavators on a long video sequence, which
contains 15 min of excavator’s operation. In our video,
the XCMG 7.5-ton compact excavator (bucket volume of
0.4 <3) completed 40 working cycles in 15 minutes and

the average bucket full rate is 101%. So the excavation
productivity is 64.64 <3/h according to Equation 1. Our
system detects 39 working cycles in the video which the
accuracy of productivity calculation is 97.5%. The test re-
sults showed the feasibility of using our pipeline to analyze
real construction projects and to monitor the operation of
excavators.

4.5 Implementation Details

We implement our detection module based on MMDe-
tection, segmentation module based on MMSegmenta-
tion, pose estimation module based on MMPose, and ac-
tion recognition module based on MMAction2 toolbox
[17, 18, 19, 20]. We use NVIDIA M40 24GB GPUs to
train and test the network.
It takes 6 hours to train detection, pose estimation, and

action recognition module. The inference time of detec-
tion, pose estimation, and action recognition are 5, 2, and
1 frames per second.

5 Conclusion

In this study, we collect a benchmark dataset from Au-
tonomous Excavator System (AES). Besides, we proposed
a safety monitor and productivity system pipeline based
on computer vision and deep learning techniques. We
integrate detection, pose estimation, activity recognition
modules into our system. We also evaluate our method on
a general construction dataset and achieve SOTA results.
However, our current system may have some limitations.
Our dataset is relatively small due to the relatively simple
waste disposal recycle scene captured from AES system.
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